Jieyu ZHANG | Food Safety | Best Researcher Award

Prof. Jieyu ZHANG | Food Safety | Best Researcher Award

Associate Professor at Sichuan University, China

Dr. Jieyu Zhang is an Associate Professor at the National Engineering Research Center for Biomaterials, Sichuan University. Her research focuses on developing biomaterials for medical applications, including flexible conductive hydrogels for heart failure treatment, wound healing, and pathogen detection. She collaborates with industry leaders to translate scientific advancements into real-world applications, such as continuous glucose monitoring systems and antibacterial materials.

Publications Profile

Orcid

πŸŽ“ Education Details

  • Ph.D. in Integrative Sciences and Engineering, National University of Singapore (2010–2016)

  • Master’s Degree in Materials Science and Engineering, Beijing University of Chemical Technology (2007–2010)

  • Bachelor’s Degree in Polymer Science and Engineering, Beijing University of Chemical Technology (2003–2007)

πŸ‘©β€πŸ”¬ Professional Experience

  • Sichuan University, Chengdu, China

    • Associate Professor (2019–present)

    • Assistant Professor (2017–2019)

  • National University of Singapore, Singapore

    • Research Fellow, Department of Chemical and Biomolecular Engineering (2016–2017)

🌱 Research Interests

  • Biomaterials & Functional Hydrogels – Development of bioengineered materials for medical applications

  • Tissue Engineering & Regenerative Medicine – Engineering conductive hydrogels for cardiac repair and wound healing

  • Pathogen Detection & In Vitro Diagnostics – Development of nanomaterials for bacterial and viral detection

  • Flexible Bioelectronics & Electrical Stimulation – Applications of conductive biomaterials in chronic disease management

πŸ† Awards and Honors

  • Featured as a Journal of Materials Chemistry B Emerging Investigator 2024

  • Achieved NMPA approval for a novel continuous glucose monitoring system

  • Lead researcher in the clinical translation of an electrically conductive wound dressing

πŸ” Conclusion

Dr. Zhang’s contributions to biomaterials science have significantly advanced medical applications, including disease diagnostics, chronic wound healing, and cardiac tissue repair. Her industry collaborations bridge the gap between fundamental research and practical medical solutions, making her work highly impactful in both academic and commercial settings.

Publications πŸ“š

πŸ“„ Antibacterial black phosphorus nanosheets for biomedical applications
πŸ“š Journal of Materials Chemistry B, 2023 | DOI: 10.1039/d3tb00723e


πŸ“„ Biomass-derived 2D carbon materials: structure, fabrication, and application in electrochemical sensors
πŸ“š Journal of Materials Chemistry B, 2023 | DOI: 10.1039/d3tb01910a


πŸ“„ 3D Biomass‐Derived Carbon Materials for Electrochemical Biosensors
πŸ“š Advanced Materials Technologies, 2023 | DOI: 10.1002/admt.202300666


πŸ“„ Conductive hydrogels with hierarchical biofilm inhibition capability accelerate diabetic ulcer healing
πŸ“š Chemical Engineering Journal, 2023 | DOI: 10.1016/j.cej.2023.142457


πŸ“„ Injectable polyaniline nanorods/alginate hydrogel with AAV9-mediated VEGF overexpression for myocardial infarction treatment
πŸ“š Biomaterials, 2023 | DOI: 10.1016/j.biomaterials.2023.122088


πŸ“„ Mussel-inspired bioactive 3D-printable poly(styrene-butadiene-styrene) and the in vitro assessment of its potential as cranioplasty implants
πŸ“š Journal of Materials Chemistry B, 2022 | DOI: 10.1039/d2tb00419d


πŸ“„ Recent advances in implantable hydrogels for treating heart failure
πŸ“š Journal of Applied Polymer Science, 2022 | DOI: 10.1002/app.53156


πŸ“„ Phytic Acid-Promoted rapid fabrication of natural polypeptide coatings for multifunctional applications
πŸ“š Chemical Engineering Journal, 2022 | DOI: 10.1016/j.cej.2022.135917


πŸ“„ Injectable conductive and angiogenic hydrogels for chronic diabetic wound treatment
πŸ“š Journal of Controlled Release, 2022 | DOI: 10.1016/j.jconrel.2022.03.014


πŸ“„ Reusable electrochemical non-enzymatic glucose sensors based on Au-inlaid nanocages
πŸ“š Nano Research, 2022 | DOI: 10.1007/s12274-022-4219-4


πŸ“„ Conductive dual hydrogen bonding hydrogels for the electrical stimulation of infected chronic wounds
πŸ“š Journal of Materials Chemistry B, 2021 | DOI: 10.1039/d1tb01432c


πŸ“„ Intrinsic Antibacterial and Conductive Hydrogels Based on the Distinct Bactericidal Effect of Polyaniline for Infected Chronic Wound Healing
πŸ“š ACS Applied Materials & Interfaces, 2021 | DOI: 10.1021/acsami.1c14088


πŸ“„ Microneedle-mediated vascular endothelial growth factor delivery promotes angiogenesis and functional recovery after stroke
πŸ“š Journal of Controlled Release, 2021 | DOI: 10.1016/j.jconrel.2021.08.057


πŸ“„ Transdermal delivery of peptide and protein drugs: Strategies, advantages and disadvantages
πŸ“š Journal of Drug Delivery Science and Technology, 2020 | DOI: 10.1016/j.jddst.2020.102007


πŸ“„ Highly Stretchable and Conductive Self-Healing Hydrogels for Temperature and Strain Sensing and Chronic Wound Treatment
πŸ“š ACS Applied Materials & Interfaces, 2020 | DOI: 10.1021/acsami.0c08291


πŸ“„ Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring
πŸ“š Biosensors and Bioelectronics, 2020 | DOI: 10.1016/j.bios.2020.112105


πŸ“„ A synergistic antibacterial effect between terbium ions and reduced graphene oxide in a poly(vinyl alcohol)–alginate hydrogel for treating infected chronic wounds
πŸ“š Journal of Materials Chemistry B, 2019 | DOI: 10.1039/c8tb02679c


πŸ“„ Scaffold with Micro/Macro‐Architecture for Myocardial Alignment Engineering into Complex 3D Cell Patterns
πŸ“š Advanced Healthcare Materials, 2019 | DOI: 10.1002/adhm.201901015


πŸ“„ Bio-responsive smart polymers and biomedical applications
πŸ“š Journal of Physics: Materials, 2019 | DOI: 10.1088/2515-7639/ab1af5


πŸ“„ Deposition of catechol-functionalized chitosan and silver nanoparticles on biomedical titanium surfaces for antibacterial application
πŸ“š Materials Science and Engineering: C, 2019 | DOI: 10.1016/j.msec.2019.01.019


πŸ“„ In-situ doping of a conductive hydrogel with low protein absorption and bacterial adhesion for electrical stimulation of chronic wounds
πŸ“š Acta Biomaterialia, 2019 | DOI: 10.1016/j.actbio.2019.03.018


Ming-li Chen | Food Safety | Women Researcher Award

Ms. Ming-li Chen | Food Safety | Women Researcher AwardΒ 

professor at Northeastern University, China

Ming-li Chen, Ph.D., is a professor and doctoral supervisor at Northeastern University of China. She serves as the director of the Analysis and Testing Centre and has been recognized in the “Million Talents Project” of Liaoning Province. With extensive experience in spectroscopy detection and mass spectrometry, her research primarily focuses on sample pretreatment and single-cell analysis. She has led multiple national research projects, published over 100 SCI-indexed papers, and holds seven patents. Her expertise and contributions have significantly advanced analytical chemistry and spectroscopy-based research methodologies.

Publications Profile

Scopus

Orcid

πŸŽ“ Education Details

  • Ph.D. in Analytical Chemistry, Northeastern University, China
  • Public Visiting Scholar, University of Texas at Arlington, USA (2011-2012)
  • Public Visiting Scholar, Lund University, Sweden (2023-2024)

πŸ‘©β€πŸ”¬ Professional Experience

  • Professor, Northeastern University, China
  • Director, Analysis and Testing Centre, Northeastern University
  • Editorial Board Member, Atomic Spectroscopy
  • Editorial Board Member, Chinese Chemical Letters
  • Editorial Board Member, Spectroscopy and Spectral Analysis
  • Consultant for major national research and innovation projects

🌱 Research Interests

  • Sample pretreatment theory
  • Spectroscopy detection technology
  • Spectroscopy and mass spectrometry in single-cell analysis
  • Element and morphology interaction in cellular environments
  • Exosome and vesicle separation and analysis

πŸ† Awards and Honors

  • “Million Talents Project” awardee, Liaoning Province
  • Principal Investigator of four National Natural Science Foundation of China (NSFC) projects
  • H-index: 16, with over 100 SCI-included research papers
  • Recognized expert in spectroscopy-based analytical chemistry

πŸ” Conclusion

Ming-li Chen is a distinguished researcher dedicated to advancing analytical chemistry, particularly in spectroscopy and single-cell analysis. Her extensive academic contributions, leadership in multiple national research initiatives, and editorial roles in high-impact journals underscore her expertise. Through groundbreaking research in spectroscopy detection and mass spectrometry applications, she has significantly influenced analytical methodologies. Her work continues to pave the way for innovations in single-cell analysis and metal component detection, making a lasting impact on scientific advancements and quality control in food safety and related fields.

Publications πŸ“š

πŸ“„ Article
🧬 Dual-Mode Tumor Diagnosis and Guided Precise Photodynamic Therapy Based on MicroRNA Fluorescence Signal Amplification and Magnetic Resonance Imaging
X. Zhang, Xinyue, J. Cui, Jiasen, M. Chen, Mingli, J. Wang, Jianhua
πŸ“š ACS Applied Materials and Interfaces, 2025


πŸ“„ Article
πŸ”¬ Ratio Type Nanoprobe with Boric Acid as Recognition Unit for Imaging Intracellular Hβ‚‚Oβ‚‚ with SERS
Y. Tian, Yizhuo, Y. Wei, Yujia, M. Zhang, Mingyu, M. Chen, Mingli, J. Wang, Jianhua
πŸ“š Talanta, 2025


πŸ“„ Article
🍏 Multifunctional Surface Enhanced Raman Scattering Substrate Fe₃Oβ‚„@AgNPs@MIL-101 for Pretreatment and Rapid Detection of Pesticide Residues on the Surface of Fruit Peels
M. Zhang, Mingyu, Y. Tian, Yizhuo, S. Liu, Sijia, X. Wang, Xinli, M. Chen, Mingli
πŸ“š Luminescence, 2025


πŸ“„ Article
πŸ’§ On-Site Determination of Aquatic Arsenic Using Hydride Generation Combined with Portable Absorbance Detector
L. Tang, Liming, Y. Tian, Yong, M. Chen, Mingli, C. Phillip Shelor, C.
πŸ“š Microchemical Journal, 2025


πŸ“„ Article
πŸ§ͺ Lanthanide-Assisted Function Tailoring of the HOF-Based Logic Gate Sensor Array for Biothiol Detection and Disease Discrimination
H. Li, Haiyan, X. Wang, Xin, Y. Chen, Yafei, J. Wang, Jianhua, M. Chen, Mingli
πŸ“š Analytical Chemistry, 2025


πŸ“„ Article
πŸ€– Machine Learning-Assisted Cell Identification Based on Ion Current Fingerprints of Single Cells at the Orifice of a Nanopipette
T. Gao, Tienan, X. He, Xiulan, Y. Xue, Yifei, P. Yu, Ping, L. Mao, Lanqun
πŸ“š CCS Chemistry, 2025


πŸ“„ Review
🧫 Strategies and Applications of Single Cell Proteomics Analysis Based on Mass Spectrometry
G. Li, Guoxing, X. Wei, Xing, M. Chen, Mingli, J. Wang, Jianhua
πŸ“š Journal of Instrumental Analysis, 2025


πŸ“„ Article
πŸ§‘β€βš•οΈ Speciation of Selenium-Containing Small Molecules in Urine and Cell Lysate by CE-ICPMS with In-Capillary Enrichment
Y. Lu, Yi, X. Men, Xue, C.X. Wu, Chengxin Xing, M. Chen, Mingli, J. Wang, Jianhua
πŸ“š Talanta, 2025


πŸ“„ Article
🦠 Inertial and Deterministic Lateral Displacement Integrated Microfluidic Chips for Epithelial-Mesenchymal Transition Analysis
Y. Zhao, Yanan, X. Zhang, Xuan, J. Bai, Junjie, M. Chen, Mingli, J. Wang, Jianhua
πŸ“š Analytical Chemistry, 2024