Jieyu ZHANG | Food Safety | Best Researcher Award

Prof. Jieyu ZHANG | Food Safety | Best Researcher Award

Associate Professor at Sichuan University, China

Dr. Jieyu Zhang is an Associate Professor at the National Engineering Research Center for Biomaterials, Sichuan University. Her research focuses on developing biomaterials for medical applications, including flexible conductive hydrogels for heart failure treatment, wound healing, and pathogen detection. She collaborates with industry leaders to translate scientific advancements into real-world applications, such as continuous glucose monitoring systems and antibacterial materials.

Publications Profile

Orcid

πŸŽ“ Education Details

  • Ph.D. in Integrative Sciences and Engineering, National University of Singapore (2010–2016)

  • Master’s Degree in Materials Science and Engineering, Beijing University of Chemical Technology (2007–2010)

  • Bachelor’s Degree in Polymer Science and Engineering, Beijing University of Chemical Technology (2003–2007)

πŸ‘©β€πŸ”¬ Professional Experience

  • Sichuan University, Chengdu, China

    • Associate Professor (2019–present)

    • Assistant Professor (2017–2019)

  • National University of Singapore, Singapore

    • Research Fellow, Department of Chemical and Biomolecular Engineering (2016–2017)

🌱 Research Interests

  • Biomaterials & Functional Hydrogels – Development of bioengineered materials for medical applications

  • Tissue Engineering & Regenerative Medicine – Engineering conductive hydrogels for cardiac repair and wound healing

  • Pathogen Detection & In Vitro Diagnostics – Development of nanomaterials for bacterial and viral detection

  • Flexible Bioelectronics & Electrical Stimulation – Applications of conductive biomaterials in chronic disease management

πŸ† Awards and Honors

  • Featured as a Journal of Materials Chemistry B Emerging Investigator 2024

  • Achieved NMPA approval for a novel continuous glucose monitoring system

  • Lead researcher in the clinical translation of an electrically conductive wound dressing

πŸ” Conclusion

Dr. Zhang’s contributions to biomaterials science have significantly advanced medical applications, including disease diagnostics, chronic wound healing, and cardiac tissue repair. Her industry collaborations bridge the gap between fundamental research and practical medical solutions, making her work highly impactful in both academic and commercial settings.

Publications πŸ“š

πŸ“„ Antibacterial black phosphorus nanosheets for biomedical applications
πŸ“š Journal of Materials Chemistry B, 2023 | DOI: 10.1039/d3tb00723e


πŸ“„ Biomass-derived 2D carbon materials: structure, fabrication, and application in electrochemical sensors
πŸ“š Journal of Materials Chemistry B, 2023 | DOI: 10.1039/d3tb01910a


πŸ“„ 3D Biomass‐Derived Carbon Materials for Electrochemical Biosensors
πŸ“š Advanced Materials Technologies, 2023 | DOI: 10.1002/admt.202300666


πŸ“„ Conductive hydrogels with hierarchical biofilm inhibition capability accelerate diabetic ulcer healing
πŸ“š Chemical Engineering Journal, 2023 | DOI: 10.1016/j.cej.2023.142457


πŸ“„ Injectable polyaniline nanorods/alginate hydrogel with AAV9-mediated VEGF overexpression for myocardial infarction treatment
πŸ“š Biomaterials, 2023 | DOI: 10.1016/j.biomaterials.2023.122088


πŸ“„ Mussel-inspired bioactive 3D-printable poly(styrene-butadiene-styrene) and the in vitro assessment of its potential as cranioplasty implants
πŸ“š Journal of Materials Chemistry B, 2022 | DOI: 10.1039/d2tb00419d


πŸ“„ Recent advances in implantable hydrogels for treating heart failure
πŸ“š Journal of Applied Polymer Science, 2022 | DOI: 10.1002/app.53156


πŸ“„ Phytic Acid-Promoted rapid fabrication of natural polypeptide coatings for multifunctional applications
πŸ“š Chemical Engineering Journal, 2022 | DOI: 10.1016/j.cej.2022.135917


πŸ“„ Injectable conductive and angiogenic hydrogels for chronic diabetic wound treatment
πŸ“š Journal of Controlled Release, 2022 | DOI: 10.1016/j.jconrel.2022.03.014


πŸ“„ Reusable electrochemical non-enzymatic glucose sensors based on Au-inlaid nanocages
πŸ“š Nano Research, 2022 | DOI: 10.1007/s12274-022-4219-4


πŸ“„ Conductive dual hydrogen bonding hydrogels for the electrical stimulation of infected chronic wounds
πŸ“š Journal of Materials Chemistry B, 2021 | DOI: 10.1039/d1tb01432c


πŸ“„ Intrinsic Antibacterial and Conductive Hydrogels Based on the Distinct Bactericidal Effect of Polyaniline for Infected Chronic Wound Healing
πŸ“š ACS Applied Materials & Interfaces, 2021 | DOI: 10.1021/acsami.1c14088


πŸ“„ Microneedle-mediated vascular endothelial growth factor delivery promotes angiogenesis and functional recovery after stroke
πŸ“š Journal of Controlled Release, 2021 | DOI: 10.1016/j.jconrel.2021.08.057


πŸ“„ Transdermal delivery of peptide and protein drugs: Strategies, advantages and disadvantages
πŸ“š Journal of Drug Delivery Science and Technology, 2020 | DOI: 10.1016/j.jddst.2020.102007


πŸ“„ Highly Stretchable and Conductive Self-Healing Hydrogels for Temperature and Strain Sensing and Chronic Wound Treatment
πŸ“š ACS Applied Materials & Interfaces, 2020 | DOI: 10.1021/acsami.0c08291


πŸ“„ Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring
πŸ“š Biosensors and Bioelectronics, 2020 | DOI: 10.1016/j.bios.2020.112105


πŸ“„ A synergistic antibacterial effect between terbium ions and reduced graphene oxide in a poly(vinyl alcohol)–alginate hydrogel for treating infected chronic wounds
πŸ“š Journal of Materials Chemistry B, 2019 | DOI: 10.1039/c8tb02679c


πŸ“„ Scaffold with Micro/Macro‐Architecture for Myocardial Alignment Engineering into Complex 3D Cell Patterns
πŸ“š Advanced Healthcare Materials, 2019 | DOI: 10.1002/adhm.201901015


πŸ“„ Bio-responsive smart polymers and biomedical applications
πŸ“š Journal of Physics: Materials, 2019 | DOI: 10.1088/2515-7639/ab1af5


πŸ“„ Deposition of catechol-functionalized chitosan and silver nanoparticles on biomedical titanium surfaces for antibacterial application
πŸ“š Materials Science and Engineering: C, 2019 | DOI: 10.1016/j.msec.2019.01.019


πŸ“„ In-situ doping of a conductive hydrogel with low protein absorption and bacterial adhesion for electrical stimulation of chronic wounds
πŸ“š Acta Biomaterialia, 2019 | DOI: 10.1016/j.actbio.2019.03.018


BABAN DEY | Food Safety | Best Researcher Award

Dr. BABAN DEY | Food Safety | Best Researcher AwardΒ 

Post-doctoral FellowΒ  at BIRLA INSTITUTE OF TECHNOLOGY MESRA, India

Baban Dey is an accomplished researcher in the field of Applied Chemistry and Chemical Engineering, specializing in the synthesis and characterization of nanomaterials, particularly focusing on metal-organic frameworks (MOFs) and carbon composites for applications in biosensors. With extensive experience as a Postdoctoral Fellow and Research Associate, he has collaborated on numerous projects and has supervised multiple PhD and Master’s students. Dey’s academic contributions are evidenced by his 24 published papers in renowned international journals. His research primarily revolves around the development of advanced materials for energy storage and environmental applications.

Publications Profile

Scopus

Google scholar

πŸŽ“ Education Details

  1. Ph.D. (Applied Chemistry)
    Institution: Birla Institute of Technology Mesra, Ranchi, India
    Duration: January 2017 – February 2023
    Thesis Title: Development of flexible three-dimensional metal-organic framework-carbon nanofiber hybrid electrode for biosensor applications
    Supervisor: Professor Arup Choudhury

  2. Master (Organic Chemistry)
    Institution: Vidyasagar University, Midnapore, West Bengal, India
    Duration: August 2014 – July 2016
    Principal Subjects: Inorganic Chemistry, Organic Chemistry, Analytical Chemistry, Physical Chemistry, Industrial Chemistry, Photochemistry, Bioorganic Chemistry, Organic Synthesis, and Spectroscopy.

  3. Bachelor (Chemistry)
    Institution: Vidyasagar University, Midnapore, West Bengal, India
    Duration: August 2011 – July 2014
    Principal Subjects: Inorganic Chemistry, Organic Chemistry, Analytical Chemistry, Physical Chemistry, Physics, Mathematics, and English.

πŸ‘©β€πŸ”¬ Professional Experience

  1. Postdoctoral Fellow
    Institution: Birla Institute of Technology Mesra, Ranchi, India
    Duration: April 2024 – Present
    Supervisor: Professor Arup Choudhury
    Responsibilities:

    • Synthesis and characterization of nanomaterials for detecting various analytes
    • Development of metal-organic framework-based carbon composites
    • Guiding PhD and Master’s students
    • Collaborative research with colleagues in the department
  2. Research Associate-I
    Institution: Birla Institute of Technology Mesra, Ranchi, India
    Duration: March 2023 – March 2024
    Responsibilities:

    • Synthesis of PMMA nanocomposites and their characterization
    • Supervision of PhD and Master’s students on related projects

🌱 Research Interests

  • Nanotechnology: Particularly in the development of flexible, high-performance nanomaterials for energy and environmental applications.
  • Metal-Organic Frameworks (MOFs): Synthesis of MOFs for sensor and energy storage applications, including biosensors for detecting harmful chemicals.
  • Polymer Composites: Developing advanced composites and nanocomposites for mechanical, electrical, and thermal property enhancements.
  • Electrochemical Sensing: Non-enzymatic electrochemical sensors for the detection of environmental and food contaminants, health biomarkers, and energy storage systems.

πŸ† Awards and Honors

  1. Best Researcher Award 2024 – International Research Awards on Advanced Nanomaterials and Nanotechnology (ANN Awards 2024).
  2. Young Researcher Award 2022 – Global Academicians & Researchers Network.
  3. Research Excellence Award 2020 – Institute of Scholars.
  4. ReviewerAdvances in Materials (AM) journal.
  5. Junior Research Fellowship (2017-2019) – Funded by DRDO, India.
  6. Senior Research Fellowship (2019-2020) – Funded by DRDO, India.

πŸ” Conclusion

Baban Dey is an emerging leader in the field of nanomaterial synthesis and applied chemistry with a strong academic foundation and extensive research experience. His work on metal-organic frameworks and carbon nanofibers positions him as a key contributor to advancing biosensor technology and energy storage systems. His academic achievements, publications, and awards reflect his commitment to scientific innovation and his leadership potential in the global research community.

Publications πŸ“š

  • πŸ“„ Article: Electrochemically enzyme-free detection of lactic acid in human sweat using magnesium organic framework@carbon nanofiber composite
    Authors: K.S. Kushwaha, Km Shivangee, Baban Dey, Mohd Shariq Khan, Pulak Datta, Arup Choudhury
    Journal: Materials Science in Semiconductor Processing, 2025
    Citations: 1


     

  • πŸ“„ Article: Hydrothermal growth of vanadium pentoxide nanofibers on carbon nanofiber mat: An anodic material for solid-state asymmetric supercapacitors
    Authors: Baban Dey, Md Wasi Ahmad, Refat Al-Shannaq, Arup Choudhury, Duck-joo Yang
    Journal: Solid State Sciences, 2025
    Citations: 1