Prof. Jieyu ZHANG | Food Safety | Best Researcher Award
Associate Professor at Sichuan University, China
Dr. Jieyu Zhang is an Associate Professor at the National Engineering Research Center for Biomaterials, Sichuan University. Her research focuses on developing biomaterials for medical applications, including flexible conductive hydrogels for heart failure treatment, wound healing, and pathogen detection. She collaborates with industry leaders to translate scientific advancements into real-world applications, such as continuous glucose monitoring systems and antibacterial materials.
Publications Profile
Education Details
-
Ph.D. in Integrative Sciences and Engineering, National University of Singapore (2010–2016)
-
Master’s Degree in Materials Science and Engineering, Beijing University of Chemical Technology (2007–2010)
-
Bachelor’s Degree in Polymer Science and Engineering, Beijing University of Chemical Technology (2003–2007)
Professional Experience
-
Sichuan University, Chengdu, China
-
Associate Professor (2019–present)
-
Assistant Professor (2017–2019)
-
-
National University of Singapore, Singapore
-
Research Fellow, Department of Chemical and Biomolecular Engineering (2016–2017)
-
Research Interests
-
Biomaterials & Functional Hydrogels – Development of bioengineered materials for medical applications
-
Tissue Engineering & Regenerative Medicine – Engineering conductive hydrogels for cardiac repair and wound healing
-
Pathogen Detection & In Vitro Diagnostics – Development of nanomaterials for bacterial and viral detection
-
Flexible Bioelectronics & Electrical Stimulation – Applications of conductive biomaterials in chronic disease management
Awards and Honors
-
Featured as a Journal of Materials Chemistry B Emerging Investigator 2024
-
Achieved NMPA approval for a novel continuous glucose monitoring system
-
Lead researcher in the clinical translation of an electrically conductive wound dressing
Conclusion
Dr. Zhang’s contributions to biomaterials science have significantly advanced medical applications, including disease diagnostics, chronic wound healing, and cardiac tissue repair. Her industry collaborations bridge the gap between fundamental research and practical medical solutions, making her work highly impactful in both academic and commercial settings.
Publications 
Antibacterial black phosphorus nanosheets for biomedical applications
Journal of Materials Chemistry B, 2023 | DOI: 10.1039/d3tb00723e
Biomass-derived 2D carbon materials: structure, fabrication, and application in electrochemical sensors
Journal of Materials Chemistry B, 2023 | DOI: 10.1039/d3tb01910a
3D Biomass‐Derived Carbon Materials for Electrochemical Biosensors
Advanced Materials Technologies, 2023 | DOI: 10.1002/admt.202300666
Conductive hydrogels with hierarchical biofilm inhibition capability accelerate diabetic ulcer healing
Chemical Engineering Journal, 2023 | DOI: 10.1016/j.cej.2023.142457
Injectable polyaniline nanorods/alginate hydrogel with AAV9-mediated VEGF overexpression for myocardial infarction treatment
Biomaterials, 2023 | DOI: 10.1016/j.biomaterials.2023.122088
Mussel-inspired bioactive 3D-printable poly(styrene-butadiene-styrene) and the in vitro assessment of its potential as cranioplasty implants
Journal of Materials Chemistry B, 2022 | DOI: 10.1039/d2tb00419d
Recent advances in implantable hydrogels for treating heart failure
Journal of Applied Polymer Science, 2022 | DOI: 10.1002/app.53156
Phytic Acid-Promoted rapid fabrication of natural polypeptide coatings for multifunctional applications
Chemical Engineering Journal, 2022 | DOI: 10.1016/j.cej.2022.135917
Injectable conductive and angiogenic hydrogels for chronic diabetic wound treatment
Journal of Controlled Release, 2022 | DOI: 10.1016/j.jconrel.2022.03.014
Reusable electrochemical non-enzymatic glucose sensors based on Au-inlaid nanocages
Nano Research, 2022 | DOI: 10.1007/s12274-022-4219-4
Conductive dual hydrogen bonding hydrogels for the electrical stimulation of infected chronic wounds
Journal of Materials Chemistry B, 2021 | DOI: 10.1039/d1tb01432c
Intrinsic Antibacterial and Conductive Hydrogels Based on the Distinct Bactericidal Effect of Polyaniline for Infected Chronic Wound Healing
ACS Applied Materials & Interfaces, 2021 | DOI: 10.1021/acsami.1c14088
Microneedle-mediated vascular endothelial growth factor delivery promotes angiogenesis and functional recovery after stroke
Journal of Controlled Release, 2021 | DOI: 10.1016/j.jconrel.2021.08.057
Transdermal delivery of peptide and protein drugs: Strategies, advantages and disadvantages
Journal of Drug Delivery Science and Technology, 2020 | DOI: 10.1016/j.jddst.2020.102007
Highly Stretchable and Conductive Self-Healing Hydrogels for Temperature and Strain Sensing and Chronic Wound Treatment
ACS Applied Materials & Interfaces, 2020 | DOI: 10.1021/acsami.0c08291
Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring
Biosensors and Bioelectronics, 2020 | DOI: 10.1016/j.bios.2020.112105
A synergistic antibacterial effect between terbium ions and reduced graphene oxide in a poly(vinyl alcohol)–alginate hydrogel for treating infected chronic wounds
Journal of Materials Chemistry B, 2019 | DOI: 10.1039/c8tb02679c
Scaffold with Micro/Macro‐Architecture for Myocardial Alignment Engineering into Complex 3D Cell Patterns
Advanced Healthcare Materials, 2019 | DOI: 10.1002/adhm.201901015
Bio-responsive smart polymers and biomedical applications
Journal of Physics: Materials, 2019 | DOI: 10.1088/2515-7639/ab1af5
Deposition of catechol-functionalized chitosan and silver nanoparticles on biomedical titanium surfaces for antibacterial application
Materials Science and Engineering: C, 2019 | DOI: 10.1016/j.msec.2019.01.019
In-situ doping of a conductive hydrogel with low protein absorption and bacterial adhesion for electrical stimulation of chronic wounds
Acta Biomaterialia, 2019 | DOI: 10.1016/j.actbio.2019.03.018